
Fill in the : A Deep Learning Investigation of Machine
Comprehension

Brandon Lin, Yonah Mann, Rohan Menezes

Abstract
Cloze-style reading comprehension is

a task designed to assess a language
model’s understanding of textual mean-
ing. In this task, one attempts to fill in
the blank of a summary sentence based
on a much larger document. We show that
deep learning models (specifically, recur-
rent neural networks) have a significant
improvement over base non-deep meth-
ods for this language task due to their
ability to encode the general sense of a
document and capture long range depen-
dencies. We also apply attention meth-
ods to basic deep architectures to further
strengthen its performance on this task.

1 Introduction

A key part of making a machine understand text
is making sure it understands its meaning. Un-
derstanding meaning can be difficult because of
complex structure of language and a non-concrete
way of representing words in language. What is
even more difficult is being able to draw inferences
from one’s understanding; this requires a deeper
familiarity with the interplay between entities and
actions in a piece of text which is difficult even
for humans to do. Therefore, being able to capture
this kind of understanding is a very important task
in text processing and has ramifications in domains
like text summarization, human-computer interac-
tion, etc.

Over time, a lot of focus has been brought to
the domain of reading comprehension, the task of
being able to read a passage of text and pass some
assessment of understanding the passage contents.
For humans, reading comprehension can be as-
sessed through a reading comprehension exam,

where one is presented with a passage and various
questions about the passage. Typically, these ques-
tions come in the form of multiple choice, where
each question is supplemented with a few choices
as possible answers.

Many strides have been made in this area, the
first of which involved curating a new dataset for
this task (Hermann et al., 2015) [1] and running
some preliminary models on it. Various atten-
tion mechanisms have been proposed to solve this
task and improve baseline accuracies. (Kadlec et
al., 2016) [2] proposes adding query attention to
individual document words through an attention
sum network, while (Cui et al., 2016) [3] proposes
overlaying multiple layers of attention.

2 Problem Formulation

We formulate this reading comprehension task as
a cloze-style question answering task in which a
learning model is supplied a document as well as
a query, which contains a blank placeholder. After
also being given a set of choices to fill in the blank,
the model then has to determine which choice best
fits the blank placeholder.

Formally, a model is given the triple (D,Q, E)
as training data, containing the document, query,
and entity set. The document and query can be
written as

D = [d1,d2, . . . ,dm]

Q = [q1,q2, . . . ,qn]

where each di,qj are words. The entity set

E = {e1, e2, . . . , ep}

is a subset of the words in D. Q also contains

1

a “blank” word qi that has a “correct answer”
ej ∈ E.

2.1 Dataset

The dataset we use is the CNN/DailyMail dataset
introduced in (Hermann et al., 2015). The data
consists of approximiately 380K questions and
90K unique documents. Each document and query
has already been tokenized with relevant “con-
fusion” entities extracted from the text. Each
entity in the text is replaced with a marker of
the form @entity<n>, where n is a entity-
specific unique integer. The query also contains a
@placeholder marker that the model must fill
in.

While the data contains information about
what actual entities correspond to the entity mark-
ers, we choose to not use this information and
make this data anonymous to the model. In this
manner, we should not be able to use pre-existing
word embeddings to bias our prediction of the cor-
rect answer. This is in spirit of the current liter-
ature; a model should be able to achieve similar
performance to that of the de-anonymized version,
so we maintain this notion in our experiment.

2.2 Data Hypotheses

A priori we make a few conjectures about the na-
ture of the data to help guide us in our model build-
ing process.

1. Any placeholder entity in a query will
be present in the corresponding document.
This hypothesis is rather simple and com-
mon sense. It simply says that the entity
must be present in an article to be included
in the corresponding summary of that arti-
cle.

2. The query alone does not provide any syn-
tactical information on the placeholder. This
hypothesis simply states that we cannot
learn anything from the sentence structure
of the query; the placeholder can be deter-
mined by the context of the article alone.
This relies on the fact that a placeholder is

an entity. In general, proper nouns (e.g. en-
tities) are substitutable for each other with-
out violating grammatical rules. On the
other hand, this would not be true for prepo-
sitions. It is much more likely to say “in the
box” as opposed to “through the box.” How-
ever, “in the Super Bowl” and “in the Cham-
pions League Final” are both equally likely
and gramatically correct statements.

3. There are mostly long range dependencies
present between the main entities of the doc-
ument. This is our most controversial data
hypothesis. Some might claim that most ar-
ticles contain summary sentences that per-
fectly sum up the main relationships be-
tween the entities of the article (and thus,
that neighboring words in the query will be
neighboring words in the document). How-
ever, while this may be true in some cases,
the main entities of the article would oc-
cur in many, many places besides the sum-
mary sentence. Thus, there would be no way
for the model to differentiate which was the
summary sentence without a broader notion
of context over the whole document.

Furthermore, articles generally break down
into separate sections that each cover a dif-
ferent main entity of the article. For ex-
ample, an article on a sports championship
game might first discuss the action in the
game itself, then discuss the two teams, be-
fore finally considering the broader impli-
cations for the sport as a whole. However,
putting all these disparate sections together
to understand how they interact and fit to-
gether requires understanding these depen-
dencies across a long range.

4. The query sentences are central to the larger
text. The queries are all taken from the
bullets that CNN and Daily Mail place in
their articles to summarize the article for the
reader. Thus, we assume that each query,
and more importantly the entities in each
query, is of central importance to the article.

2

3 Methods

We employ three different levels of models: a non-
deep benchmark, a base deep learning model, and
an advanced deep model.

3.1 Non-deep Benchmark

Following is a logistic regression method to solve
this problem. We cannot directly apply logistic re-
gression to this problem with the entities as the
classes since between examples, the number of en-
tities varies and the ”correct class” will vary across
examples as well.

We convert each document-query-entity triple
(D,Q, E) into a set of |E| auxiliary training ex-
amples {(xi, yi)}|E|i=1 as follows: xi = f(D,Q, ei)
will be a “featurization” function of the document,
query, and the corresponding entity. yi is set to
1 if ei is the “correct” entity for this triple, and 0
otherwise.

Once all these auxiliary training examples are
created, we learn a weight vector w using logis-
tic regression. Recall that logistic regression asso-
ciates a probability η(x) to each training example
based on the following formula:

η(x) =
1

1 + e−w>x

During test time, the document-query-entity triple
will be converted into the auxiliary training exam-
ples as before, and the correct entity is predicted
as such:

ê = argmax
ei∈E

η(xi)

The featurization function captures a variety of
features:

• The number of times the entity e appears in
the document D.

• The position of the first appearance of e in
D.

• Whether there is an n-gram match between
the document and query, in the vicinity of
the @placeholder marker, if the marker
is replaced with the entity e.

In essence, this is rather similar to the linear clas-
sifier in (Chen et al., 2016) [4]; there, they choose
their weight vector w to maximize the dot product
w>xi. However, they employ an implementation
of LambdaMART to find this weight vector. We
choose to use logistic regression in ours since it
accomplishes the same goal, and can be efficiently
run in PyTorch.

3.2 Base Deep Models

The base deep models we consider are BiLSTMs.
LSTMs have been proven to be a natural exten-
sion of RNNs in the literature, incorporating a
forget gate and cell state to choose to remem-
ber certain words throughout a sentence. Bidirec-
tional LSTMs allow us to capture forwards as well
as backwards long-distance relationships within a
sentence. Figure 1 shows how we input each ex-
ample into the LSTM.

Let N be the total number of entities. Our
model begins by concatenating the document D
and the query Q into a new vector

D ◦Q = [d1,d2, . . . ,dm, |||,q1,q2, . . . ,qn]

where ||| represents a delimiter token. We feed this
vector into the LSTM to yield a final output vec-
tor y ∈ Rx, where x is the output size. y is then
fed into a fully connected layer to an output vec-
tor in RN . We then select and index the entities
corresponding to the document to obtain another
vector v ∈ R|E|, and finally feed this through a
softmax and employ a negative log-likelihood loss
function.

3.3 Advanced Deep Models: Incorporat-
ing Attention

We now consider adding an attention mechanism
on top of our base deep models. Specifically, we
use a form of double attention, both from the doc-
ument to the query and from the query to the doc-
ument. Our model draws inspiration from (Cui et
al., 2016) [3], except we expand the flexibility of
the network to incorporate bilinear general atten-
tion instead of normal attention.

To start, we feed our query Q and our docu-
ment D into separate bidirectional GRUs and ex-

3

tract the hidden states for each time step, yielding
document embeddings d̃1, d̃2, . . . , d̃m and query
embeddings q̃1, q̃2, . . . , q̃n. We then apply atten-
tion by constructing a matrix M ∈ Rm×n as fol-
lows:

Mij = d̃>i Wq̃j

where W is a weight matrix that we learn. This,
in effect, constructs a matrix with dot products
between all pairs of document words and query
words. We then take this matrix and separately
softmax over both the rows and the columns. This
gives us the relative importance of the document
words in terms of the query (α) and the query
words in terms of the document (β), respectively.
Finally, we average over the query words of the
beta matrix and output

v = softmax(α>β)

to get a final probability distribution over all the
document words. The model outputs a guess for
the blank based solely on which document words
were present in the original document.

We specifically chose this form of double at-
tention because it improves upon and pushes fur-
ther the basic idea behind regular attention. Nor-
mally, attention is designed to weight the words
of the document in terms of how relevant they are
to the query. Then, you would simply be able
to take the most relevant entity and output that
as the answer to your question. However, this
model inherently assumes that each query word is
equally important and thus, has an equal say in de-
termining the relevance of a particular document
word. This assumption is clearly simplistic and
misguided, which is why we introduce double at-
tention. This form of attention first learns the rel-
evance of each query word in relation to the doc-
ument. Now that the query words have weight-
ing in relation to their importance, we can weight
the important of the document words in relation to
the query with a more rational sense of the query
words’ importance in mind.

3.4 Additional Implementation Notes

All word embeddings were retrieved from the
Stanford NLP website for pre-trained GloVe em-
beddings (Pennington et al., 2014) [5]. We use an

embedding size of d = 50, and anonymized entity
and placeholder embeddings were randomly gen-
erated according to the distribution N (0, 1). We
choose a hidden size of h = 128, and a learning
rate of η = 0.001.

4 Results

We summarize our results in the table below. Fig-
ure 2 shows the respective learning curves for
training.

Model Accuracy
Linear Classifier 29.05%

BiLSTM 39.27%
Attention w/ BiLSTM ?%

We see that our deep BiLSTM base model out-
performs the logistic regression model by quite a
bit–namely, by 10%. This does show that locality
is not enough to assume when looking at a word;
there are long-range dependencies within the con-
text of a document that have added importance
in recognizing an entity within a document. The
features of logistic regression involving n-grams
and word counts were not sufficient to capture the
complexity of the document.

We also found that the LSTM converged at a
relatively consistent pace, obtaining a pretty de-
cent loss after approximately 5 epochs. We sus-
pect that we can obtain slightly better results with
a few more epochs of training, but also wanted to
avoid overfitting the training data.

Our attention model was rather difficult to
train, and unfortunately was not able to learn any
meaningful results beyond random guessing. We
find that our model’s learning curve steadily hov-
ered around a constant loss, demonstrating that the
model is not learning anything substantial from the
data. We suspect that this may be due to either an
implementation error or an issue with our architec-
ture. Trying simpler architectures with less atten-
tion layers did not seem to be solving the problem,
either. We also suspect that this is not an issue
with the length of training time, since the learning
curve did not seem to be making any meaningful
progress within the first few hours of training.

4

5 Conclusion

Ultimately, the results of our model showed that
our initial data hypotheses were indeed correct.
While models based just on the query could not do
much better than random guessing, logistic regres-
sion over the concatenated document and query
(data hypothesis #2) that predicts one of the en-
tities present in the document (data hypothesis #1)
did much better than random guessing. Because
the model architecture was centered around them,
clearly, exploiting these two data hypotheses were
key to the model’s 6× improvement.

However, our deep model went even further by
using data hypotheses #3 and #4 by taking into ac-
count long range dependencies via an RNN and a
central summary of the entire document through
the hidden state. Since it also took in both the
document and the query and predicted from the
entities present in the document, it incorporated
all four of our hypotheses and indeed performed
the best out of all the models we tried. Thus, we
were clearly able to demonstrate the power of deep
learning by demonstrating how it can incorporate
our more complicated data hypotheses (#3 and 4)
to achieve far better results (an almost doubled ac-
curacy).

Unfortunately, our attention RNN also demon-
strated another key property of deep learning: that
it is extremely hard to train with complex archi-
tectures. Although attention allows us to exploit
hypotheses #3 and 4 even further, it requires more
layers, more mathematical operations, and even
some complex shuffling. All of these added bells
and whistles made our model very difficult to train
and prevented us from accessed these hypothe-
sized benefits.

Future work should be devoted to refining our
attention model to achieve a better accuracy than
the base deep BiLSTM model. Furthermore, with

the long lengths of articles, there is a high likeli-
hood of a vanishing gradient with respect to our
complex architecture. Work could be done to pre-
vent this issue by using advanced seq2seq models
to transform articles into a smaller size.

6 Acknowledgements

We would like to thank Jeffrey Cheng, David Rol-
nick, and Konrad Kording for sharing their knowl-
edge through the CIS 700 course offering this past
semester. We would also like to thank Erik Zhao
for allowing us to borrow his GPU for training and
testing our models.

References

[1] K. M. Hermann, T. Koisk, E. Grefenstette,
L. Espeholt, W. Kay, M. Suleyman, and
P. Blunsom, “Teaching machines to read and
comprehend,” 2015.

[2] R. Kadlec, M. Schmid, O. Bajgar, and
J. Kleindienst, “Text understanding with the
attention sum reader network,” 2016.

[3] Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and
G. Hu, “Attention-over-attention neural net-
works for reading comprehension,” 2016.

[4] D. Chen, J. Bolton, and C. D. Manning, “A
thorough examination of the cnn/daily mail
reading comprehension task,” 2016.

[5] J. Pennington, R. Socher, and C. D. Man-
ning, “Glove: Global vectors for word
representation,” in Empirical Methods in
Natural Language Processing (EMNLP),
2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

5

Figure 1: How we pass in a document-query pair into an LSTM.

Figure 2: Loss Curves for Logistic Regression, BiLSTM, and BiGRU with Attention

6

