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Abstract

With the ever-growing demand for insightful data analyses, the protection of user
data becomes more paramount than ever before. Differential privacy is a recent mathe-
matical formalization of maintaining privacy that has been incorporated in many large
technology companies as a way of protecting their users’ data. In this paper, we inves-
tigate how network analysis and graph theory inspired the creation of new techniques
in differentially private algorithm design. We see that the particular structure and
nature of networks makes them particularly sensitive to perturbation, and investigate
techniques such as noise reduction and Lipschitz extensions in the privacy literature to
mitigate this. Finally, we look at several applications of the aforementioned techniques
to private combinatorial optimization and graph statistic release.
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1 Introduction

In today’s society, data is extremely valued – each data point an application has on a user is
a bigger step in tailoring their user experience to them. In particular, individual interactions
on online applications have significantly contributed to the insights one can provide to those
users, such as giving personalized recommendations. However, with the rise of recent qualms
regarding data privacy breaches at technology companies that amass such data, society has
seen an increased scrutiny towards the rightful and secure usage of data. Even though data is
extremely valuable for providing insights, simple anonymization and release is not sufficient
to protect individual privacy, as demonstrated in the Netflix Prize de-anonymization in
Narayanan and Shmatikov [NS06].

Differential privacy has emerged as a way to mathematically formulate the challenges of
privacy. As the winner of the Gödel Prize in 2017, differential privacy has seen massive
development and promise as a way to answer key problems in data analysis, such as combi-
natorial optimization and learning theory. Differential privacy, as introduced in [Dwo06], is
a way of introducing relative privacy, since the assurance of absolute privacy for a dataset
is impossible. Many techniques have been developed to design private algorithms, mainly
outlined in Dwork and Roth [DR14].

In this paper, we focus on a particular area of private algorithm design: algorithms that
operate over structured networks and graphs. Primarily, we will see how simply thinking
about problems in graph theory helps to motivate the creation of new techniques for private
algorithm design, namely projection-based methods. The graphical type of data structure
is extremely practical as it allows us to model the interactions among many individuals
in a community. Graphs offer a very nice abstraction over a variety of problems in, for
example, combinatorial optimization, and offer a nice visualization over a large population
of interactions. However, the structure of graphs will also prove difficult to create private
algorithms for.

One of the major applications of privacy in networks is the release and computation of data
in social network applications, such as Facebook, YouTube, Twitter, etc. Companies such
as Facebook have had an increased focus on better privacy methods since the Cambridge
Analytica scandal [Lap], so the development of such network analysis algorithms would be
crucial for Facebook to work towards this goal. A prominent application is for companies to
identify members of a particular population based on social network data (such as inclusion
in a terrorist organization) without compromising the privacy of others. Proof of concept
methods for this are detailed in Kearns et al. [KRWY15]. Other papers [GRU11, KNRS13,
HLMJ09, XCT14] detail other private algorithms such as cut size computation and network
data release, so there are a wide variety of uses for social networks to discover insights on
their data while preserving privacy.
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2 Background

2.1 Basic definitions

We begin by introducing the formalization of privacy; namely, its definition, analysis tech-
niques, and mechanisms for ensuring privacy.

The term “private data release” seems very oxymoronic; how can we ensure accurate report-
ing of results without giving away valuable information about particular people, if the data
we release is itself valuable? If we stick with an absolute measure of privacy, however, Dwork
[Dwo06] illustrates an impossibility result about ensuring this. In this work, “auxiliary in-
formation” is cited as the main obstacle to absolute privacy, information one may gather
about a particular database. Knowledge of such auxiliary information essentially gives a
significant advantage to someone that has the dataset as opposed to someone without the
dataset [Dwo06].

If we can’t ensure absolute privacy, perhaps we can relax our definition of privacy and
consider relative privacy instead [Dwo06]; that is, rather than defining a private data release
as one where an individual can’t be learned about, but instead one where including a certain
individual within the data release does not allow an adversary to learn anything about that
individual (namely, their presence within the dataset). Let D denote the space of all datasets.
To formalize this definition,

Definition 2.1 ([Dwo06, DMNS06]). An ε-differentially private algorithm A : D → Rd

satisfies the property that if ∀D,D′ ∈ D differing in exactly one element, and for all X ⊆
Ran(A), we have

Pr[A(D) ∈ X] ≤ eε Pr[A(D′) ∈ X]

Notice that by writing eε ≈ 1 + ε, the definition becomes

Pr[A(D) ∈ X] ≤ (1 + ε) Pr[A(D′) ∈ X]

which we can more intuitively digest. This definition suggests that any additional individual
added to a dataset should not increase the “learnability” of that dataset significantly (by
more than an ε additive factor) [Dwo06]. The higher the value of ε, the more information
we can afford to “leak” in A’s output. When we say that D and D′ differ in exactly one
element, we mean this in the following way: if we view D and D′ as elements in Rn (where
each element of the vector represents an individual’s data), the Hamming distance between
them should be exactly 1 [Dwo06].

If we wish, we can extend this definition to allow an additive leeway to the probabilities:

Definition 2.2 ((ε, δ)-Differential Privacy, [DR14]). An (ε, δ)-differentially private algorithm
A : D → Rd satisfies the property that if ∀D,D′ ∈ D differing in exactly one element, and
for all X ⊆ Ran(A), we have

Pr[A(D) ∈ X] ≤ eε Pr[A(D′) ∈ X] + δ
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2.2 Notions of privacy in graphs

In graphs and networks, the input data to an algorithm is a highly structured dataset, and
maintaining this structure is very important. Thus, there is a more specialized definition
when considering protecting the privacy on a graph structure.

This definition of privacy comes from Kasiviswanathan et al. [KNRS13]. There are two types
of privacy that we can consider: edge differential privacy and vertex differential privacy :

Definition 2.3 (Neighboring graphs, [KNRS13]). The graphs G,G′ are edge-neighboring if
there exist edges e, e′ in each graph, respectively, such that G \ e ∼= G′ \ e′. The graphs
G,G′ are vertex-neighboring (or node-neighboring) if there exist vertices v, v′ in each graph,
respectively, such that G \ v ∼= G′ \ v′.

We write G ∼e G′ to denote that G and G′ are edge neighbors, and G ∼v G′ to denote that
they are vertex neighbors.

Definition 2.4 (Differential privacy in graphs, [KNRS13]). An ε-edge differentially private
algorithm A : G → Rd satisfies the property that if ∀G,G′ ∈ G such that G ∼e G′, and for
all X ⊆ Ran(A),

Pr[A(G) ∈ X] ≤ eε Pr[A(G′) ∈ X]

Analogously, we say A achieves ε-vertex differential privacy if the above holds for all pairs
of graphs G ∼v G′.

We will see that designing vertex differentially private algorithms will be slightly more dif-
ficult than designing edge differentially private algorithms, simply because the removal of a
vertex changes a graph’s structure more drastically than the removal of an edge.

Finally, we will be often talking about the set of all graphs G as a metric space when we
need to refer to the “distance” between two graphs. The metric is defined here:

Definition 2.5 ([KNRS13]). Let dE : G × G → Z≥0 be the edge graph-metric defined as
follows: if

G = G0 → G1 → G2 → · · · → Gk = G′

is a minimum-length sequence of graphs such that Gi ∼e Gi+1 for all i, then dE(G,G′) = k.

dV : G × G → Z≥0 is defined similarly, but for ∼v.

2.3 Designing privacy mechanisms

When designing a strategy for ensuring privacy, there are three criteria that we should keep
in mind:

• Security: how private is our mechanism? This is evaluated based on the specific
definition of privacy we use; here we use (ε, δ)-differential privacy as defined above.
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However, subsequent definitions of differential privacy may digress from this. For
example, Rényi differential privacy [Mir17] relies on an alternative divergence measure
(Rényi divergence) whereas (ε, δ)-differential privacy is formulated in term of the max
divergence. f -differential privacy [DRS19] relaxes the original definition and uses a
tradeoff function f to describe the privacy of a function.

• Accuracy: is our mechanism giving meaningful results? A trivial mechanism could
simply output random results in order to completely preserve privacy, so we want
to ensure some proximity towards the actual result in order for our algorithm to be
useful. We will often evaluate these through the use of tail bounds, and see with what
probability our algorithm’s output deviates from the true value by a large amount (we
want this to be small!).

• Tractability: can our private result be computed efficiently? We will see that even
when we can find a differentially private algorithm for a problem, it may not be practical
to use, e.g. having a runtime exponential in the input size.

We will see that often algorithms must make a compromise between these three criteria, but
the most important measure of success of an algorithm, from our point of view, is privacy
preservation. This is not to say that accuracy and tractability are not important to us; since
privacy is the focus of designing differentially private algorithms in the first place, naturally,
this is what we would want to guarantee.

2.4 Sensitivity of privacy

Naturally, one concern that is harbored within our definition is how much impact a certain
individual will truly have on the output of a dataset analysis. For example, consider datasets
that consist of people residing in the United States. The number of people in such a dataset
will only be changed by 1 if a person is excluded, but if this dataset consisted of the number
of online purchases people make, the exclusion of one individual would change this quantity
much more. Fortunately, this notion is captured in the idea of sensitivity, how much an
algorithm’s output will change if a single individual is excluded from our dataset. The
simplest and most common form of sensitivity is global sensitivity :

Definition 2.6 ([Dwo06]). The global sensitivity of f : D → Rk is defined to be

∆(f) = max
D,D′: D∼D′

‖f(D)− f(D′)‖1

where ‖ · ‖1 denotes the L1-norm.

This definition captures the sensitivity over all possible neighboring datasets, so global sen-
sitivity tends the most towards a “worst-case” possibility.

In most of our privacy-preserving mechanisms, we will want to add some perturbation pro-
portional to the sensitivity of our statistic (since greater sensitivity means needing more
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noise to “cover up” the actual value of our statistic) [DMNS06]. However, when considering
problems in graph theory, statistics on a network can change drastically with the removal
or addition of a single individual; for example, the number of edges can change by O(|V |)
[NRS07].

As a result, most results in privacy-preserving computation in networks employ new reduced
sensitivity mechanisms that still preserve the same amount of privacy. In sections 3.2.1 and
4.1.2, we investigate various sensitivity measures that have been formulated to give better
accurate and private outputs.

2.5 Composition theorems

A useful property that our definition of differential privacy gives us is that if we wish to run
multiple mechanisms sequentially, the privacy parameters nicely compose with each other.

Theorem 2.7 (Composition [MM09, DL09]). Let A = {Ai}ni=1 be a sequence of algorithms
which are each (εi, δi)-differentially private, where Ai takes the outputs of all algorithms in
{Aj}i−1

j=1 as input. Then any algorithm that takes the output of each algorithm in A as input
is (
∑n

i=1 εi,
∑n

i=1 δi)-differentially private.

There exist more advanced composition theorems that give tighter bounds (detailed in Dwork
and Roth [DR14]), but we won’t be making use of those in this paper.

2.6 Standard methods for preserving privacy

2.6.1 The Laplace mechanism

We now introduce our first mechanism for transforming an algorithm into one with differ-
entially private guarantees. Unfortunately, any deterministic algorithm will not have any
good privacy guarantee [DR14]. Therefore, we employ the use of randomization in order to
output appropriately.

Recall that the Laplace distribution Lap(x|b) has the density function

Lap(x|b) =
1

2b
e−|x|/b

Suppose we wish to design an ε-differentially private algorithm A′ : D → Rk for some
collection of datasets D, given a pre-existing algorithm A : D → Rk that may not be
differentially private. The Laplace mechanism (due to Dwork et al. [DMNS06]) adds noise
drawn from a Laplace distribution to the output of our original algorithm:

A′(D) = A(D) + (Y1, Y2, . . . , Yk)︸ ︷︷ ︸
Y

where Yi ∼ Lap

(
∆(A)

ε

)

This simple mechanism is in fact all we need to make our algorithm private:
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Theorem 2.8 (Laplace mechanism privacy [DMNS06]). Suppose A′ is an algorithm created
through the Laplace mechanism from algorithm A. Then A′ is ε-differentially private.

We can use this Laplace mechanism on any algorithm that returns a real-valued vector as
its output.

2.6.2 The exponential mechanism

What if the output range of our algorithm isn’t a real-valued vector, but rather a set of
discrete outputs that don’t have a total ordering (for example, outputting a color from the
set {Red,Green,Blue})? We can no longer perturb the output directly with noise, since
our outputs are no longer real-valued. However, we can attempt to still add some “discrete
noise” by randomizing the value we output slightly.

This new mechanism, the exponential mechanism, is due to McSherry and Talwar [MT07]
and was originally developed in the context of auction pricing. Suppose R is the set of
outputs of our algorithm. In order to get a sense of how well a certain output is paired with
a dataset D, suppose that we have a function q : D × R → R that represents a measure of
how likely a user would prefer a certain output of the algorithm [MT07]. In optimization
problems, q is closely associated with the objective function we wish to optimize.

Then, for a given dataset D, our new differentially private algorithm A′ will output a single
element of R over the probabilities [MT07]

Pr[A′(D, q) = k] ∝ exp {εq(D, k)}

If a particular output of our algorithm is “good” for our dataset D, the algorithm will select
this value as its output more likely than other unfavorable outputs.

The privacy of the algorithm is related to the sensitivity of the function q with respect to its
dataset parameter, ranging over all possible values.

Theorem 2.9 (Exponential mechanism privacy [MT07]). The exponential mechanism gives
2ε∆(q)-differential privacy.

How accurate is the result of this mechanism? As in, how close do we get to the optimal
value of q(D, k)? This depends on the set of values we wish to output:

Theorem 2.10 (Accuracy of the exponential mechanism [MT07]). Let r∗ = A′(D, q) be the
output of the exponential mechanism. Then,

Pr

[
q(D, r∗) ≤ max

r∈R
q(D, r)− log |R|+ t

ε

]
≤ e−t

In other words, the probability that the exponential mechanism outputs a value that yields

more than (approximately) O
(

∆(q)t
ε

)
error from optimal is exponentially small in t [MT07].
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The fact that our error depends on the logarithm of |R| gives more flexibility in the output
set size.

While the exponential mechanism gives good privacy guarantees on discrete outputs, it is
difficult to efficiently sample from the above distribution; if |R| is large, we need to compute
Pr[A′(D, q) = k] for each value k ∈ R. Efficient sampling from this mechanism is often
problem-specific; we will see one example in the minimum cut problem in section 3.1.

3 Private combinatorial optimization in graph theory

One major application of graph theory in differential privacy is the setting of classical com-
binatorial optimization problems. Classical algorithms taught in a introductory algorithms
course [CLRS09] often times have efficient implementations but don’t do any anything at
the individual datum level to preserve privacy (whether it be for relationships/edges or in-
dividuals/vertices). We turn to some well-known problems in graph theory and see how the
tools of differential privacy can help us design private and accurate algorithms for analysis
of graphs and networks.

3.1 Global Min-Cut

Recall that a cut (S, V \ S) of an undirected graph G = (V,E) is a partition of the vertices
of G into two sets [CLRS09]. The size of the cut, CG(S) is equal to the number of edges
whose endpoints are in different parts of the cut, namely:

CG(S) = | {{u, v} ∈ E | u ∈ S and v ∈ V \ S} | = |CutG(S)|

A property of common interest is the global minimum cut [CLRS09]; that is,

MC(G) = min
S⊆V

CG(S)

Efficient algorithms exist for finding the minimum cut of a graph; a well-known algorithm
due to Ford and Fulkerson [FF09] can (in certain implementations like that of Edmonds
and Karp [EK72]) find the minimum cut in O(|V |3|E|) time. However, outputting an exact
minimum cut in a graph will lead to a violation of differential privacy [GRU11]. This section
will explore the work from Gupta et al. [GRU11] that devise a private algorithm to solve
this problem.

Furthermore, we will look at the minimum cut problem as a means of discovering a way
of designing private algorithms for optimization, by proving a lower bound on how much
additive error we must incur in order to yield a private algorithm [GRU11].

7
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3.1.1 An inefficient application of the exponential mechanism

First, noting that the output of the minimum cut algorithm is a set of discrete choices S ⊆ V ,
one can use the exponential mechanism to give a noisy response of the true minimum cut.
What’s more is that the quality score q in the exponential mechanism is directly related to
the optimization objective in the problem – the number of edges in our cut. Thus, we can
try and analyze the following algorithm as a warm-up:

1. Select (S, V \ S) to be our minimum cut with probability

Pr[S] ∝ exp{−εCG(S)}

2. Output (S, V \ S).

Note that we want to maximize the quality score q while minimizing the size of the cut, hence
the negative sign in the front. The aforementioned algorithm is very simple to describe, and
can be shown achieves 2ε-differential privacy, just by using the result from the exponential
mechanism, since q has a sensitivity of 1.

In order to compute CG(S) for a cut S, Gupta et al. [GRU11] use Karger’s contraction
algorithm [Kar93]. This algorithm runs in time and outputs a minimum cut with probability.
However, in terms of efficiency, this algorithm evaluates all O(2|V |) possible min-cuts in the
graph, so this alone makes this algorithm very inefficient.

Ideally, we only want to sample among cuts that are close enough to the true minimum cut
in order to yield a good accuracy. Fortunately, Karger’s algorithm gives us a probabilistic
bound on how good the outputted cut will be.

Theorem 3.1 ([Kar93]). Fix any cut S such that CG(S) ≤ k ·MC(G). Then,

Pr[Karger’s outputs S] ≥ 1

n2k

Corollary 3.1.1 ([Kar93]). The number of cuts in G with size at most k ·MC(G) is at most
n2k.

Proof. Let K be the number of cuts of size at most k · MC(G), and let S1, S2, . . . , SK be
those cuts in some order. Let Ei be the event that Karger’s algorithm outputs cut Si. Then,

Pr[output of Karger’s has size ≤ k ·MC(G)] = Pr

[
K⋃
i=1

Ei

]

=
K∑
i=1

Pr[Ei]

≥ K · 1

n2k

This lower bound must be less than 1, so we get that K ≤ n2k, as desired.
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This is very close to our goal of having an efficient, private algorithm! Instead of computing
values of all the cuts, we can use Karger’s (a sufficient number of times) to generate all
n2k cuts of size ≤ k ·MC(G), for a suitable k. The main issue here, however, is that even
though Karger’s algorithm gives us a small minimum cut, this new algorithm may not be
differentially private. In particular, whenever the size of the minimum cut is small, releasing
this min-cut consistently may violate privacy [GRU11].

3.1.2 Lower bounds on private min-cut

It turns out that in order to maintain edge-differential privacy for every edge in our graph,
we need to add a number of edges logarithmic in the number of vertices. The following lower
bound is from Gupta et al. [GRU11]:

Theorem 3.2 ([GRU11]). Any ε-differentially private algorithm A for private min-cut must
satisfy

CG(A(G)) ≥ MC(G) + Ω

(
lnn

ε

)
in expectation.

To prove this, we need to find a particular graph that enforces this lower bound. In light of
this, we prove the following lemma:

Lemma 3.3 ([GRU11]). Suppose ε = o(1). There exists a graph G = (V,E) that satisfies
the following properties:

1. For all v ∈ V , deg(v) = (1± o(1))
(

lnn
3ε

)
.

2. For any cut (S, V \S) such that 2 ≤ |S| ≤ |V |−2, we have that CG(S) ≥ (1−o(1))
(

lnn
2ε

)
.

Proof. [Rot20] Let k = lnn
3ε

. We show that each property holds in the Erdös-Rényi graph
G(n, k

n−1
) with probability ≥ 3

4
.

We start with property 1. Clearly, the expected degree of each vertex is k (WLOG the
calculation is done with v1):

E[deg(v1)] =
n−1∑
i=1

Pr[{v1, vi} ∈ E] = (n− 1)

(
k

n− 1

)
= k

Let D be the degree of a particular vertex v. Note that S is the sum of n − 1 independent
Bernoulli random variables, so applying a Chernoff bound, we obtain

Pr[|D − E[D]| ≥ δE[D]] ≤ Pr[D ≥ (1 + δ)E[D]] + Pr[D ≤ (1− δ)E[D]] (union bound)

≤ e−
δ2E[D]

3 + e−
δ2E[D]

3 (by Chernoff)

= 2e−
δ2E[D]

3

9
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Letting δ =
√

3 ln(n/δ0)
E[S]

, the inequality becomes

Pr[|D − E[D]| ≥
√

3E[D] ln(n/δ0)] ≤ 2

n
δ0

for all δ0 ∈ [0, 1]. Thus, with probability at least 1− 2
n
δ0, the degree of a particular vertex v

is in the range
k ±

√
3k ln(n/δ0)

Union bounding over all the vertices, we have that all vertices fall in this range with proba-
bility at least 1− 2δ0. Finally, taking δ0 = 1

4
and noting that k = lnn

3ε
and ε = o(1), we have

that this range is

k ±
√

3k ln(n/δ0) = k

(
1±

√
3 ln(n/δ0)

k

)
= k(1± o(1))

This shows property 1 holds with probability at least 1
2
. Now assume property 1 holds; for

property 2, fix a cut (S, V \S). WLOG, assume that |S| ≤ n
2
. Then the expected size of the

cut is

E[CG(S)] = |S| · (n− |S|) · k

n− 1
= O(k|S|)

Let C be a random variable denoting the size of the cut CG(S). Applying a Chernoff bound
to this gives

Pr[C ≤ E[C]−
√

2E[C] ln(1/δ1)] ≤ δ1

Thus, with probability 1−δ1, the size of a particular cut is at least O(k|S|)−
√

2k|S| ln(1/δ1).
Now note that there are at most

(
n
|S|

)
≤ n|S| cuts with a partition of size |S|. Thus, by taking

δ1 = 1
2n|C|+1 and union bounding over all cuts of size |S|, we have that with probability 1− 1

2n
,

all cuts of size |S| have sizes at least the above amount. But union bounding again over
all possible vertex sizes of the cut (from 2 to n/2), we get that all cuts satisfy the desired
property with probability at least 1− 1

2
= 1

2
.

Therefore, combining the results from both properties, we get that both of them hold with
probability at least 1

2
· 1

2
= 1

4
, so such a graph must exist [Rot20].

Proof of Theorem 3.2. This proof is due to Gupta et al. [GRU11]. Once again, let k = lnn
3ε

.
Let G = (V,E) be the graph from Lemma 3.3. Let A be a ε-differentially private algorithm
for Min-Cut. Consider the probability distribution of the output of A(G). Let ({v}, V \{v})
be a particular single cut of G. There are n singleton cuts, so the probability that A outputs
any particular singleton cut is ≤ 1

n
:

Pr[A(G) = ({v}, V \ {v})] ≤ 1

n

Now, let
G′ = G \ {{v, w} ∈ E}

10
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which is simply G after removing all edges incident on v. Note that the min-cut in G′ is
zero since v is an isolated vertex. Since G and G′ differ in at most (1± o(1))k edges, by our
differential privacy guarantee we have

Pr[A(G′) = ({v}, V \ {v})] ≤ e(1±o(1))kε Pr[A(G) = ({v}, V \ {v})

≤ n(1+o(1))/3 · 1

n

=
1

n2/3

for sufficiently large n. Note that in G′, the cut ({v}, V \ {v}) is the min-cut since it has
size zero. All other cuts have size at most lnn

2ε
− lnn

3ε
= Ω( lnn

ε
). Thus, the expected size of

the cut produced is at least(
1− 1

n2/3

)
· Ω
(

lnn

ε

)
= Ω

(
lnn

ε

)
via the proof of Gupta et al. [GRU11].

3.1.3 Take 2: an improved min-cut algorithm

Thus, we investigate the approach detailed by Gupta et al. [GRU11] to fix these issues.
Their algorithm randomly adds an appropriate amount of edges to lower bound the size of
the minimum cut, and then runs the original algorithm. We present their algorithm here
[GRU11]:

1. Arbitrarily fix a sequence of sets of edges on n vertices:

∅ = H0 ⊂ H1 ⊂ · · · ⊂ H(n2)−1 ⊂ H(n2)
= E(Kn)

2. Select i with probability

Pr[i] ∝ exp

{
−ε
∣∣∣∣MC(G ∪Hi)−

8 lnn

ε

∣∣∣∣}
3. Run Karger’s algorithm n7 times on G ∪Hi to generate n7 cuts.

4. Select S from this set of cuts to be our minimum cut with probability

Pr[S] ∝ exp (−εCG∪Hi(S))

This new, improved algorithm makes use of the exponential mechanism twice: once (with
q(G, i) = −|MC(G∪Hi)− 8 lnn

ε
|) to select the edges to add, and again (with q(G∪Hi, S) =

CG∪Hi(S)) to select the cut. It also runs Karger’s algorithm a polynomial number of times
to generate a set of candidate cuts that are (with high probability) close to the true min-cut
size.

11
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Lemma 3.4 ([GRU11]). With high probability, the optimal min-cut of the graph G ∪Hi is
in the range [

4 lnn

ε
,MC(G) +

12 lnn

ε

]
Proof. This proof is due to Gupta et al. [GRU11]. Suppose MC(G) > 8 lnn

ε
. Then we

know that MC(G ∪Hi) >
4 lnn
ε

. Furthermore, the optimal value of q(G, i) (as stated above)
attained at i = 0, since the min-cut only increases as i increases. Thus, by Theorem 2.10,

Pr

[∣∣∣∣MC(G ∪Hi)−
8 lnn

ε

∣∣∣∣ ≥ (MC(G)− 8 lnn

ε

)
+

1

ε
(2 lnn+ t)

]
≤ e−t

Pr

[∣∣∣∣MC(G ∪Hi)−
8 lnn

ε

∣∣∣∣ ≥ MC(G)− 4 lnn

ε

]
≤ 1

n2

Pr

[
MC(G ∪Hi) ≥ MC(G) +

4 lnn

ε

]
≤ 1

n2

so the probability MC(G) falls outside of the claimed interval is upper-bounded by 1
n2 .

Next, suppose MC(G) < 8 lnn
ε

. Since the min-cut changes by at most 1 when considering
consecutive terms in the sequence

MC(G ∪H0),MC(G ∪H1), . . . ,MC(G ∪H(n2)
)

we must have some i that achieves MC(G ∪Hi) = 8 lnn
ε

. Thus, by Theorem 2.10 again,

Pr

[∣∣∣∣MC(G ∪Hi)−
8 lnn

ε

∣∣∣∣ ≥ 1

ε
(2 lnn+ t)

]
≤ e−t

Pr

[∣∣∣∣MC(G ∪Hi)−
8 lnn

ε

∣∣∣∣ ≥ 4 lnn

ε

]
≤ 1

n2
(letting t = 2 lnn)

Pr

[(
MC(G ∪Hi) ≥

12 lnn

ε

)
∪
(

MC(G ∪Hi) ≤
4 lnn

ε

)]
≤ 1

n2

so the result follows, via the proof of Gupta et al. [GRU11].

Theorem 3.5 ([GRU11]). Assuming Lemma 3.4, with high probability, the algorithm chooses
i and outputs a cut S such that

CG∪Hi(S) ≤ MC(G ∪Hi) +O

(
lnn

ε

)
Proof. This proof is due to Gupta et al. [GRU11]. Assume that i is selected to satisfy the
condition of Lemma 3.4. Then, by Theorem 3.1.1, the number of cuts in G ∪Hi that have
size at most MC(G ∪Hi) + t for some t is

ct = n
2
(

MC(G∪Hi)+t
MC(G∪Hi)

)
= n

2+ 2t
MC(G∪Hi) ≤ n2 · n

2t
4 lnn/ε = n2e

εt
2 (1)

12
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We want to use this to bound the tail probability of the outputted cut size being too high,
so we will consider each probability of the cut size being equal to a certain amount. Note
that the number of cuts of size equal to MC(G ∪Hi) + t is ct − ct−1.

The n7 cuts S outputted by Karger’s algorithm must include the min-cut of G ∪ Hi with
very high probability; indeed, the chance it does not include it is(

1− 1

n2

)n7

≤ 1

en5

So for a cut (S, V \ S) with size MC(G∪Hi) + t, the probability our algorithm outputs this
cut is

Pr[S] =
exp(−ε(MC(G ∪Hi) + t)∑

S∈S exp(−εCG∪Hi(S))
≤ exp(−ε(MC(G ∪Hi) + t)

exp(−εMC(G ∪Hi)
= exp(−εt)

and so we can bound the tail probability by

Pr[CG∪Hi(S) ≥ MC(G ∪Hi) + t] ≤
∑
t′≥t

(ct′ − ct′−1) exp(−εt′)

=
∑
t′>t

e−εt
′
ct′ −

∑
t′≥t−1

e−εt
′−εct′

≤
∑
t′≥t

e−εt
′
ct′ −

∑
t′≥t

e−εt
′−εct′

= (1− exp(−ε))
∑
t′≥t

e−εt
′
ct′

≤ (1− exp(−ε))
∑
t′≥t

e−εt
′/2 · n2 (by (1))

≤ n2(1− exp(−ε))
(

e−εt/2

1− e−ε/2

)
Letting t = 8 lnn

ε
gives

= n2 · n−4 · 1− e−ε

1− e−ε/2︸ ︷︷ ︸
decreasing in ε, so O(1)

=
1

n2

and the claim follows, via the proof of Gupta et al. [GRU11].

Corollary 3.5.1 ([GRU11]). With high probability, the algorithm outputs a cut S such that

CG(S) ≤ MC(G) +O

(
lnn

ε

)

13
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Proof. The proof is due to Gupta et al. [GRU11]. Lemma 3.4 tells us that

MC(G ∪Hi)−MC(G) <
12 lnn

ε

with high probability (namely, at least 1− 1
n2 ). Theorem 3.5 says that

CG∪Hi(S)−MC(G ∪Hi) <
8 lnn

ε

Adding these two inequalities gives

CG∪Hi(S)−MC(G) <
20 lnn

ε
=⇒ CG(S)−MC(G) <

20 lnn

ε

since any cut S must have higher size in G∪Hi than G. This proves the claim, via the proof
of Gupta et al. [GRU11].

Theorem 3.6 ([GRU11]). The above algorithm is (4ε,O( 1
n2 ))-edge differentially private.

Proof. This proof is due to Gupta et al. [GRU11]. For now, suppose that the algorithm
A didn’t run Karger’s algorithm n7 times and instead sampled from all min-cuts. This
algorithm (call it A′) is the composition of two applications of the exponential mechanism
with privacy parameter 2εδ(q) = 2ε, so the privacy of this algorithm is 4ε.

Now, consider an auxiliary algorithm Afail that runs Karger’s algorithm n7 times, but then
samples among all possible cuts in step 4, and outputs FAIL if the chosen cut is not among
the n7 computed cuts. We show that Pr[Afail outputs FAIL] = O( 1

n2 ).

First, note that by Lemma 3.4, MC(G ∪Hi) >
4 lnn
ε

with probability at least 1− 1
n2 . Thus,

conditioning on this, let F be the event where the outputted cut has a size greater than
3MC(G ∪Hi), and let E be the event that Afail outputs FAIL.

Pr[Afail outputs FAIL] = Pr[E] = Pr[E | F ] Pr[F ] + Pr[E | F̄ ] Pr[F̄ ]

≤ Pr[F ] + Pr[E | F̄ ]

We saw that from Theorem 3.5, Pr[F ] ≤ 1
n2 . For Pr[E | F̄ ], by Theorem 3.1, the probability

that Karger’s outputs a certain cut of size at most 3MC(G ∪ Hi) is at least 1
n6 . Thus, the

probability that n7 runs of Karger’s algorithm don’t output that particular cut is at most(
1− 1

n6

)n7

≤ e−
n7

n6 =
1

en

Thus, Pr[E | F̄ ] ≤ 1
en

= O( 1
n2 ), and therefore Pr[Afail outputs FAIL] = O( 1

n2 ).

Finally, when we consider the three algorithms A, A and Afail, we note that the difference
between the probabilities of outputting a particular cut in the pair (A′,Afail) is at most
O( 1

n2 ), and similarly for (Afail,A). Thus, the probabilities in the output distributions of
(A′,A) must differ by O( 1

n2 ); namely:

|Pr[A(G) = S]− Pr[A′(G) = S]| ≤ O

(
1

n2

)
14
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so we can conclude that, for G ∼e G′,

Pr[A(G) = S] ≤ Pr[A′(G) = S] +O

(
1

n2

)
≤ e4ε Pr[A′(G′)] +O

(
1

n2

)
≤ e4ε

(
Pr[A(G′) = S] +O

(
1

n2

))
+O

(
1

n2

)
= e4ε Pr[A(G′) = S] +O

(
1

n2

)
and A is (4ε,O( 1

n2 ))-edge differentially private, by the proof of Gupta et al. [GRU11].

Thus, we have a nice implementation of a private minimum cut algorithm. Gupta et al.
[GRU11] use this similar technique of proving a lower bound to guarantee privacy for several
other combinatorial optimization problems (not necessarily graph-theoretic).

3.2 MST Cost

Another way of achieving a private algorithm in optimization is by employing similar mech-
anisms to that of the Laplace mechanism, but find a way to reduce the noise significantly in
a way that still makes the mechanism private. In this section, we investigate a differentially
private algorithm from Nissim et al. [NRS07] that departs from a simple application of one
of the aforementioned algorithm. Suppose we now have a weighted graph G = (V,E) with
an weight function w : E → R. For simplicity, assume that the weights of the edges are
bounded above by some constant K.

Recall that there are efficient algorithms to compute the cost of an MST, such as Kruskal’s
[Kru56] or Prim’s [Pri57] algorithm. However, outputting the exact cost of the MST would
yield a leak of privacy. Therefore, our goal is to perturb the cost of the MST by a sufficient
amount as to preserve privacy. We consider an edge differentially private notion of privacy
here, with the additional condition that two graphs can also be neighbors if exactly one of
the weights of their edges is different.

So, we consider two graphs to be edge-neighbors if their weight functions have Hamming
distance 1. Note that if we simply apply the Laplace mechanism to this, the global sensitivity
of the MST cost function, fMST, would be K, since for a complete graph with all edge weights
equal to K, we can change its weight to 0 and change the MST cost by K [NRS07]. We will
see that we can reduce this noise by a significant margin!

We refer to the approach given in Nissim et al. [NRS07]. The high level idea of their
approach is to introduce an alternative notion of sensitivity known as smooth sensitivity.
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3.2.1 Smooth Sensitivity

Global sensitivity provides too much leeway for the output of a private function due to the
fact that it considers the worst-case scenario across all possible instances of our dataset
[NRS07]. As we saw, this worst case scenario isn’t very fruitful for our algorithm in the vast
majority of instances. To curb this issue, we can look at the other extreme of sensitivity–
what if we considered perturbation around the specific dataset our algorithm is operating
on? Instead of looking at all pairs of differing datasets, we can fix one of the elements of the
pair and consider perturbing around that:

Definition 3.7 ([NRS07]). The local sensitivity of f : D → Rd is defined to be

LSf (D) = max
D′: D∼D′

‖f(D)− f(D′)‖1

So why don’t we just use noise according to local sensitivity rather than global sensitivity?
The intuitive answer is that changing the noise based on the example may reveal some
characteristics of the original dataset; particular inputs may be more sensitive than others
and thus will result in drastically different outputs [NRS07]. Thus, much of the existing
literature tries to find an appropriate compromise between global and local sensitivity.

Smooth sensitivity, among other measures of sensitivity, are inspired by the high global
sensitivity of graph statistics; the removal of a single vertex or edge can have a large impact
on the structure of a graph.

Definition 3.8 ([NRS07]). A β-smooth upper bound Sf for LSf satisfies the following prop-
erties:

1. For all D ∈ D, Sf (D) ≥ LSf (D)

2. For all D,D′ ∈ D such that D ∼ D′, Sf (D) ≤ eβSf (D
′).

Definition 3.9 ([NRS07]). The smooth sensitivity of f : D → R, parameterized by β, is
defined to be

S∗f,β(D) = max
D′

(
LSf (D

′)e−βd(D,D′)
)

To understand the motivations behind these definitions, observe that the smooth upper
bound on LSf seeks to be a compromise between local and global sensitivity [NRS07]. The
second condition of its definition is to make sure that our noise doesn’t change too much be-
tween neighboring inputs [NRS07]. Since our upper bound is directly related to the smooth
sensitivity, this ensures there is a constant upper bound to the change between small per-
turbations.

The definition of smooth sensitivity is very similar to that of global sensitivity, except with
an added exponential term. This allows global sensitivity to consider all pairs of datasets,
but additionally weighting distant datasets less.

It turns out that this form for the smooth sensitivity has the following property:
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Theorem 3.10 ([NRS07]). The smooth sensitivity S∗f,β is a β-smooth upper bound for LSf .
Furthermore, S∗f,β is the minimum such upper bound, i.e. for all β-smooth upper bounds S,
we have that S∗f,β(D) ≤ S(D).

Proof. This proof is due to Nissim et al. [NRS07]. It is easy to see that S∗f,β(D) ≥ LSf (D
′)

by letting D′ = D. To show β-smoothness, suppose D ∼ D′. Let D∗ be the dataset that
achieves the maximum in S∗f,β(D). Then,

S∗f,β(D) = LSf (D
∗)e−βd(D,D∗) (by definition of D∗)

≤ LSf (D
∗)e−β(d(D′,D∗)−d(D,D′)) (by the triangle inequality)

= LSf (D
∗)e−β(d(D′,D∗)−1)

= eβLSf (D
∗)e−βd(D′,D∗)

≤ eβS
(
f,βD

′)

thus proving the claim, via the proof from Nissim et al. [NRS07].

Theorem 3.11 ([NRS07]). Suppose A′ is an algorithm created via perturbing the output of
A by:

A′(D) = A(D) + Lap

(
2Sf,β(D)

ε

)
where β = ε

2 ln(1/δ)
. Then, A′ is (ε, δ)-differentially private.

The above theorem shows that if we can efficiently compute the smooth sensitivity for any
problem we wish to apply our modified Laplace mechanism to, we can greatly reduce the
noise involved and still maintain privacy.

It will become more useful, however, to rewrite the smooth sensitivity as in Nissim et al.
[NRS07]:

S∗f,β(D) = max
D′

(
LSf (D

′)e−βd(D,D′)
)

= max
k∈[0..n]

(
e−βk max

D′: d(D,D′)=k
LSf (D

′)

)
so we define the sensitivity at distance k [[NRS07]] to be

A
(k)
f (D) = max

D′: d(D,D′)≤k
LSf (D

′)

and thus we can rewrite the smooth sensitivity as

S∗f,β(D) = max
k∈[0..n]

e−βkA
(k)
f (D)

Notice that this is an equality rather than an equality since even if A
(k)
f (D) achieved the

maximum at some k′ < k, it would also be shadowed by A
(k′)
f (D) and thus does not matter.
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This means that if we can compute the function A
(
fk), we can compute the smooth sensitivity

of f . We call this function the sensitivity at distance k [NRS07]. This function is a lot easier
to reason about for specific problems since it removes the exponential term and leaves only
the local sensitivity terms, which are easier to work with.

3.2.2 Computing smooth sensitivity

Before we prove a result about the smooth sensitivity of the MST, we first show the smooth
sensitivity of the minimum function, which is involved in the computation of MST sensitivity.
Assume that the input to the minimum function is sorted: 0 ≤ x1 ≤ · · · ≤ xn ≤ K.

Lemma 3.12 ([NRS07]). The sensitivity at distance k of the minimum function, fmin, is

A(k)(x) = max(xk+1, xk+2 − x1)

Proof. The proof is due to Nissim et al. [NRS07]. Note that the local sensitivity of the
sequence x1, . . . , xn is given by

LSfmin
(x1, . . . , xn) = max(x1, x2 − x1)

since only two perturbations can change the minimum: changing x1 to 0, or increasing x1

past x2. Using the same logic, we can look at the following two vectors that are a distance
k away from x1, . . . , xn:

0, 0, . . . , 0, xk+1, . . . , xn and x1, 0, 0, . . . , 0, xk+2, . . . , xn

The first sequence has a local sensitivity of xk+1, and the second has a local sensitivity of
xk+2 − x1. Thus the claim holds, from the proof of [NRS07].

The main result we will prove in this section is the expression for A
(k)
MST, the local sensitivity

at distance k for the MST cost function:

Theorem 3.13 ([NRS07]). Let G = (V,E) be a graph with weight function w. The local
sensitivity at distance k for the MST cost function has the form

A
(k)
f (G) = max

S⊂V
A

(k)
fmin

({w(e) | e ∈ CutG(S)})

where fmin denotes the minimum function.

Sketch of proof. It will suffice to prove that

LSf (G) = max
S⊂V

LSfmin
({w(e) | e ∈ CutG(S)})

The proof for this stems from the following fact: for any MST T of G and any cut S ⊂ V
of G, T must contain the minimum edge crossing the cut (S, V \ S) (otherwise, one could
form a smaller MST by using the minimum weight edge across the cut). Thus a change in
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the minimum weight edge across a cut will affect the cost of the MST, and so changing the
MST cost by changing the weight of an edge will be determined by the maximum change
across all cuts of the minimum weight edge.

To prove the original claim, we show the proof from Nissim et al. [NRS07]:

A
(k)
f (G) = max

G′: d(G,G′)≤k
LSf (G

′)

= max
G′: d(G,G′)≤k

max
S⊂V (G′)

LSfmin
({w′(e) | e ∈ CutG′(S)})

Since G and G′ are on the same set of vertices, we can exchange the order of the maxima:

= max
S⊂V

max
G′: d(G,G′)≤k

LSfmin
({w′(e) | e ∈ CutG′(S)})

= max
S⊂V

A
(k)
fmin

({w(e) | e ∈ CutG(S)}

proving the claim via the proof from NIssim et al. [NRS07].

This gives us a nice way to compute the smooth sensitivity and give a better privacy result
for the MST! The only thing we have to show is the efficiency of implementing this procedure,
since näıvely implementing the computation of A(k)(G) would be highly efficient as we will be
iterating through all the cuts of the graph. For the details of such computation, see Nissim
et al. [NRS07]. We note that the computation of the sensitivity of fmin takes constant time,
so this is not the bottleneck of computation.

Due to this algorithm, the sensitivity no longer directly relies on the maximum weight edge
in the graph; instead, smooth sensitivity makes it such that the maximum weight edges are
given less weight in the overall maximum due to the e−βd(D,D′) term. Thus, our smooth
sensitivity will be much lower than the global sensitivity.

This is one of the earliest results in reducing the noise for a differentially private algorithm.
More recent results [Sea15, Pin18] attempt to do more than just release the MST cost;
Sealfon [Sea15] releases a spanning tree (close in weight to the actual MST) in a privacy
setting in which edges are publicly known and weights are unknown, and neighboring graphs
differ by magnitude 1 in the L1-norm. Pinot [Pin18] uses a slightly different neighbor metric
for weighted graphs and use an algorithm similar to Prim’s algorithm in order to compute a
private MST.

4 Projection-based methods for graph differential pri-

vacy

Upon until results about smooth sensitivity and its applications to edge differential privacy
were published, there was not a lot of literature regarding vertex differentially private algo-
rithms [KNRS13]. These algorithms would be tougher to devise due to the more disruptive
nature of removing a vertex versus removing an edge.
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In this section, we introduce projection-based methods, a set of more recent techniques that
are useful in designing vertex-differentially private algorithms (and can also be applied to
edge-differentially algorithms as well). Recent literature around designing differentially pri-
vate algorithms for graph problems has revolved this same central theme. The motivation
behind their shared ideas comes from highlighting which graphs are the primary troublemak-
ers in adding sensitivity-based noise. In particular, graphs with vertices of high degree will
have high global sensitivity with the removal of a vertex for many different graph statistics,
outlined in Kasiviswanathan et al. [KNRS13].

4.1 Restricted sensitivity

4.1.1 Background

Rather than looking at the whole class of graphs, Blocki et al. [BBDS12] temporarily restricts
its view to low-degree graphs; in particular graphs whose vertices all have degree at most
some constant. In fact, this is a good assumption; in practice, many large graphs and social
networks are sparse, i.e. the degree of a vertex is much smaller than the total number of
vertices [BBDS12]. Blocki et al. [BBDS12] use the examples of telephone calls, the Internet
graph, and Facebook’s friendships to illustrate that this assumption is valid. Let

GD = {G = (V,E) | deg(v) ≤ D, ∀v ∈ V } ⊂ G

The key insight here is that within these set of low-degree graphs, functions that are com-
puted on these graphs will (theoretically) satisfy some nice properties. Using this idea, Blocki
et al. [BBDS12] introduce a new notion of sensitivity in order look solely at nice, low-degree
graphs:

Definition 4.1 ([BBDS12]). The restricted sensitivity of f under the set GD ⊂ G is defined
to be

RSf (GD) = max
G1,G2∈GD

|f(G1)− f(G2)|
d(G1, G2)

Restricted sensitivity will allow us to narrow our scope of graphs to a much smaller one while
simultaneously allowing us to use much smaller noise; in fact, for most graphs G ∈ GD, we
have that LSf (G)� RSf (GD) [BBDS12].

The goal here is to find an algorithm that gives good guarantees on graphs in GD, and then
extend this behavior to the rest of the graphs in G. In particular, we wish to achieve good
accuracy still on sparse graphs.

We also introduce some other definitions used by Blocki et al. [BBDS12]:

Definition 4.2 ([RS15]). Let (X, dX), (Y, dY ) be metric spaces. A function f : X → Y is
Lipschitz continuous1 with Lipschitz constant c (a c-Lipschitz function) if

dY (f(x1), f(x2)) ≤ c · dX(x1, x2)

1The original paper uses the term “c-smooth” to refer to this notion; we instead refer to it via Lipschitz
continuity in order to not clash with the terminology of smooth sensitivity.
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for all x1, x2 ∈ X.

What Lipschitz continuity intuitively says is that the proximity of points in a space should
not change by more than a constant multiplicative factor. This ensures that points that are
close by aren’t shifted around too much when mapped to a new space. Since our metric
spaces are discrete in the case of the space of graphs (endowed with the graph neighbor
metric), we would like neighboring graphs to not result in a drastically different results
under our projection operator µ [BBDS12].

4.1.2 Restricted sensitivity for edge privacy

In the world of edge-differential privacy, restricted sensitivity actually works quite nicely.
Blocki et al. [BBDS12] define a projection operator µ : G → GD that converts an arbitrary
graph to one of constant max degree D. This projection operator is meant to be used
in conjunction with a function f that operates well on graphs in GD (by which we mean,
gives good privacy guarantees). Their work, along with others, make heavy use of Lipschitz
(equivalently, Lipschitz continuous) functions:

Fortunately, Blocki et al. [BBDS12] prove the following results regarding projection opera-
tors:

Lemma 4.3 ([BBDS12]). Let (G, dE) be a metric space of the set of graphs equipped with the
edge neighbor metric dE. Then there exists a 3-Lipschitz projection operator µE : G → GD.

The intuition for constructing the projection operator µE is to fix some ordering of the edges,
and for each vertex with degree at least D, deleting those edges exceeding some index in the
ordering that makes the degree at most D.

Theorem 4.4 ([BBDS12]). Let f : G → R. The algorithm

Af (G) = f(µE(G)) + Lap

(
3 ·RSf (GD)

ε

)
is ε-edge differentially private.

This gives a very clean result for providing edge privacy on graphs; simply project our graph
in question, and add noise to the computation on this reduced graph.

4.1.3 Restricted sensitivity for vertex privacy

The situation is different in the world of vertex privacy. In particular, because of the increased
sensitivity when removing a vertex, the construction of our projection operator is a little
more involved in this case. We leave out most of the details out in this paper since the
expression for the noise addition is rather complex, but we will summarize the results here.

The main result that prevents us from using a similar projection scheme is the following
hardness result:
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Theorem 4.5 ([BBDS12]). Unless P = NP , no efficient projection operator µV : G → GD
exists that gives an O(lnD)-approximation to the distance from a graph G to GD:

dV (G, µV (G)) ≤ O(lnD)dV (G,GD)

This theorem tells us that we can’t design an O(1)-Lipschitz projection operator under the
vertex neighbor metric. If such an efficient operator µV existed (with constant c = O(1)),
we could take a sequence of graphs G = G0 → G1 → G2 → · · · → Gt ∈ GD such that
Gi ∼v Gi+1 and t = dV (G,GD) [BBDS12]. Then, since µV is c-Lipschitz, we have that
dV (µV (Gi), µV (Gi+1)) ≤ c, and thus by the triangle inequality,

dV (µ(G0), µ(Gt)) = dV (µ(G), Gt) ≤ ct

and so [BBDS12],

dV (G, µV (G)) ≤ dV (G,Gt) + dV (Gt,GD) ≤ ct+ t = O(1)dV (G,GD

To get around this, Blocki et al. [BBDS12] instead allow our projection operator to map
to graphs in G2D and equip this to a distance estimator d̂ which, roughly, is a c-Lipschitz
function taking values between d(G, µV (G)) and c · d(G,GD).

Then, Blocki et al. [BBDS12] create a vertex-differentially private algorithm by adding noise
proportional to the following β-smooth upper bound on f ◦ µV :

Sf,β(G) = max
d∈Z≥d̂(G)

exp

{
−β
c

(d− d̂(G))

}
(2d+ c+ 1)RSf (G2D)

Blocki et al. [BBDS12] proves that a 4-Lipschitz distance estimator exists. Using this
distance estimator, we can finally create our vertex-differentially private algorithm:

Theorem 4.6 ([BBDS12]). Let f : G → R. The algorithm

Af (G) = f(µE(G)) + Lap

(
2 · Sf,ε/2 ln(1/δ)(G)

ε

)
is (ε, δ)-vertex differentially private.

4.2 Lipschitz extensions for higher-dimensional vertex privacy

In this section, we look at a different approach for designing vertex differentially private
algorithms, via a concept called Lipschitz extensions [RS15].

The idea behind Lipschitz extensions is not too far from the idea of projections. We will
again focus on a specific subset of graphs, specifically graphs of bounded degree. However,
the concept of Lipschitz extensions are applicable to queries taking values in Rd for d ≥ 2
(restricted sensitivity is only applicable to scalar-valued queries). However, we will see that
not all queries in Rd admit Lipschitz extensions [RS15]. In contrast, Lipschitz extensions
always exist for queries in R [McS34].
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4.2.1 Background

We first define Lipschitz extensions:

Definition 4.7 ([RS15]). Let X ⊂ X∗ be two sets. Let f : X → Y be a c-Lipschitz function.
A Lipschitz extension f ∗ : X∗ → Y of f with stretch s is a function that satisfies the following
conditions:

• For all x ∈ X, f(x) = f ∗(x).

• f ∗ is s · c-Lipschitz.

We can see how these would be useful for designing differentially private algorithms; their
motivation is taking advantage of low global sensitivity within a particular subset of our
domain X∗. Lipschitz extensions with stretch s scale the sensitivity by a factor of s, so
finding constant stretch extensions is extremely useful since, when used in privacy-preserving
mechanisms, they keep the privacy parameter small [RS15].

As a concrete example, suppose we want to compute the number of edges fE(G) in a graph
G. The global sensitivity of this function is O(n) in an arbitrary graph, since the removal of
a vertex will remove at most n − 1 edges [KNRS13]. On the other hand, when considering
degree-bounded graphs, the global sensitivity is onlyO(D). With a constant stretch Lipschitz
extension f ∗E of fE and the Laplace mechanism, we now have an algorithm that releases the
number of edges with noise proportional to O(D)/ε instead of O(n)/ε.

It’s important to note in the above example that the result is not necessarily accurate on high
degree graphs; all this guarantees us is that on sparse graphs (which are more common) our
result is released with much smaller noise. Furthermore, this algorithm is still ε-differentially
private, so we don’t compromise any degree of privacy. A common workaround for this is to
apply the standard Laplace mechanism for graphs that yield a high-valued statistic (measured
with the L1-norm) and choosing a sufficient threshold to run this on in order to maintain
privacy [KNRS13].

Thus, the remainder of this section will be focused on designing such extensions.

4.2.2 Lipschitz extensions for scalar functions

If our query function is a scalar function, it turns out that a Lipschitz extension of stretch
1 always exists. This theorem is due to McShane [McS34].

Theorem 4.8 ([McS34]). Let (X∗, d) be a metric space. Given a c-Lipschitz function f :
X → Y , the function f ∗ : X∗ → Y such that

f ∗(x∗) = sup
x∈X

(f(x)− c · d(x, x∗))

is a stretch 1 Lipschitz extension of f .
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Proof. Due to [McS34]. If x∗ ∈ X, then by Lipschitz continuity, we have that

f(x)− f(x∗) ≤ |f(x)− f(x∗)| ≤ c · d(x, x∗)

f(x)− c · d(x, x∗) ≤ f(x∗)

for all x ∈ X, and note that equality is achieved when x = x∗. So,

f ∗(x∗) = sup
x∈X

(f(x)− c · d(x, x∗)) = f(x∗)

This proves the first property of Lipschitz extensions. Now we prove that

|f ∗(x∗2)− f ∗(x∗1)| ≤ c · d(x∗1, x
∗
2)

for all x∗1, x
∗
2 ∈ X∗. WLOG suppose that f ∗(x∗1) ≤ f ∗(x∗2). Then,

f ∗(x∗2)− f ∗(x∗1) = sup
x∈X

(f(x)− c · d(x, x∗2))− sup
x∈X

(f(x)− c · d(x, x∗1))

≤ sup
x∈X

[(f(x)− c · d(x, x∗2))− (f(x)− c · d(x, x∗1))]

(using sup f(x) + sup g(x) ≥ sup(f(x) + g(x)))

= sup
x∈X

[c(d(x, x∗1)− d(x, x∗2))]

≤ c · d(x∗1, x
∗
2) (by the triangle inequality)

proving the claim from [McS34].

This gives a nice analytic form for the Lipschitz extension; however, in practice, näıvely
computing this exact expression is not necessarily efficient, as we need to iterate through all
elements of X in order to compute the value of f ∗. In practice, this form is not used often
and query-specific constructions are used, but this at least shows that it is possible to have
a stretch 1 function for any scalar function regardless of computation bounds.

On the contrary, Raskhodnikova and Smith [RS15] prove an impossibility result regarding
the existence of higher-dimensional Lipschitz extensions:

Lemma 4.9 ([RS15]). ∃c such that for all p ≥ 3, there exist functions f : GD → Rp (with
the L1-norm) that do not have stretch-O(1) Lipschitz extensions to G.

4.2.3 Lipschitz extension for degree list

We show a Lipschitz extension for the degree list of a graph, based on [RS15]. The degree
list of a graph G = (V,E) is

deg-list(G) = sort([deg(v)]
|V |
i=1) ∈ R∗

Without loss of generality, we will assume the degree list to be sorted. Note that the
sensitivity of the degree list with the vertex neighbor metric is 2D, since removing a vertex
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from will result in one term in the degree list going to zero, and all other non-zero terms
decreasing by at most one [RS15]. Sorting will also not increase the L1-norm between the
degree lists; for a proof of this see Lemma A.1.

We will show a function that has stretch 3
2
, i.e. the resulting sorted degree lists from neigh-

boring graphs have L1 distance at most 3D [RS15].

To do so, Raskhodnikova and Smith [RS15] and Kasiviswanathan et al. [KNRS13] make use
of a so-called flow graph of our graph:

Definition 4.10 ([RS15]). The flow graph FG(G) of a graph G = (V,E) is defined as
follows: let V ′ = V ` ∪ V r ∪ {s, t}, where V ` and V r are copies of V , and let E ′ be the
following set:

E ′ = {(s, v`) | v` ∈ V `} ∪ {(v`i , vrj ) | (vi, vj) ∈ E} ∪ {(vr, t) | vr ∈ V r

Let all edges going out of s have capacity D as well as all edges going into t. Let all other
edges have unit capacity. V ′ and E ′ form a directed graph denoting the flow graph FG(G)
of G.

We can use this flow graph in order to construct several Lipschitz extensions. Kasiviswanathan
et al. [KNRS13] use this flow graph to construct an extension of the edge count in a graph.

In this paper, we will focus on the degree list. For the degree list, in addition to maximizing
the s-t flow in the flow graph, we will supplement this with a minimization problem in order
to obtain a unique max-flow [RS15]. We define our Lipschitz extension f ∗ as follows [RS15]:

1. Fix a canonical ordering of V , and construct the flow graph of G, FG(G).

2. Let fs be a vector of the flows going out of s (so fs ∈ Rn) and let ft be a vector of the
flows going into t. Let fst = fs ◦ ft be their concatenation.

3. Define our objective function Φ as:

Φ(f) = ‖fst − ~D2n‖2
2

where ~D2n is a vector of entries D of length 2n.

4. Find a flow f̂ in FG(G) that minimizes the value of Φ(f̂st).

5. Output sort(f̂s), the sorted list of flows going out of s.

One property of Φ we will be using often is that it is strictly convex [RS15]. The minimization
of Φ allows us to deterministically select a unique max-flow, since Φ is strictly convex and
must have a single global minimum over the set of flows [RS15]. It turns out that minimizing
Φ actually leads to a max-flow over the flow graph:

Theorem 4.11 ([RS15]). If f is a flow that optimizes Φ, then f is a max-flow in FG(G).
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Proof. Due to Raskhodnikova and Smith [RS15]. If f was not a max-flow, then in the
residual graph of FG(G), there exists some s  t path. This path would use two edges
(s, w) and (x, t) that are the only edges contributing to the vector fst. By augmenting the
flow f to f ′, we get that Φ(f ′) < Φ(f) since Φ is stricty decreasing in fst (as the entries
of fst must be nonnegative and upper-bounded by D). But this contradicts the fact that f
achieves the optimal value of Φ. This proof [RS15] thus proves the claim.

Now we are ready to prove that this extension is actually a Lipschitz extension:

Theorem 4.12 ([RS15]). f ∗ : G → R∗ is a Lipschitz extension of fdeglist : GD → R∗ of
stretch 3

2
, i.e.

• f ∗(G) = fdeglist(G) for all graphs G ∈ GD.

• f ∗ is 3D-Lipschitz:

‖f ∗(G2)− f ∗(G1)‖1 ≤ 3D · dV (G1, G2) ∀G1, G2 ∈ G

Proof. Due to Raskhodnikova and Smith [RS15]. Consider two neighboring graphsG1 ∼v G2,
where V (G2) = {v′} t V (G1). Let f1 and f2 be the max-flows in FG(G1) and FG(G2),
respectively, that optimize Φ. Then the flow f = f2 − f1 is feasible in the residual graph of
FG(G2) for f1. Therefore, we have that

‖f ∗(G2)− f ∗(G1)‖1 = ‖fs‖1

so it suffices to show that ‖fs‖ ≤ 3D.

The way we achieve this is via the Flow Decomposition Theorem [Eri19], by decomposing
f into a set of s t paths and cycles. We partition this decomposition into three separate
flows:

• Ψs will contain all paths and cycles of the decomposition that use the edge (s, v′) in
FG(G2).

• Ψt will contain all paths and cycles that do not use (s, v′) but use (v′, t) in FG(G2).

• Ψ0 will contain all other paths and cycles.

We prove bounds on each of these flows, which will suffice to proving our claim.

First, we claim that ‖Ψs
s‖1 ≤ 2D. Note that each path in Ψs will contribute the value of its

own flow to Ψs and each cycle starting from s will contribute at most twice its flow (for the
edge going out of s and the one going into s). Since the total flow going through (s, v′) is at
most D by construction, the claim holds.

Next, we claim that ‖Ψt
s‖1 ≤ D. In the same logic as above, each path to t will contribute its

own value. However, each cycle contributes 0 to Ψt
s, since the cycle would have to go through
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s, and the t  s portion of the cycle would allow us to augment the flow Ψt, contradicting
the optimality of f2. Thus, by similar logic, ‖Ψt

s‖1 ≤ D.

Finally, we claim that ‖Ψ0
s‖1 = 0. Suppose by way of contradiction that ‖Ψ0

s‖1 > 0. Let F1

be a set containing all feasible flows in FG(G1), endowed with the L2-norm, which includes
f1. F1 is a convex set, since any convex combination of feasible flows is also a feasible flow.
Note that f1 + Ψ0 ∈ F1 since Ψ0 has no paths that use v′. Furthermore, since f1 minimizes
Φ, f1 is the closest point in F1 to ~D2n (since it minimizes the L2-norm to ~D2n). We make
use of Theorem A.2 to conclude that

〈(f1 + Ψ0)− f1, ~D2n − f1〉 ≤ 0

〈Ψ0, ~D2n − f1〉 ≤ 0

where 〈·, ·〉 is the inner product. Similarly, letting F2 be the set of feasible flows in FG(G2),
and using similar logic,

〈(f2 −Ψ0)− f2, ~D2n − f2〉 ≤ 0

−〈Ψ0, ~D2n − f2〉 ≤ 0

Adding these two inequalities gives us

〈Ψ0, ~D2n − f1〉 − 〈Ψ0, ~D2n − f2〉 ≤ 0

〈Ψ0, f2 − f1〉 ≤ 0

〈Ψ0,Ψs + Ψt + Ψ0〉 ≤ 0

〈Ψ0,Ψs + Ψt〉 ≤ 0

However, the only way for this to happen is if Ψ0 = ~0, since Ψ0 and Ψs + Ψt cannot have
opposite signs in any entry since they are both subflows of f . Therefore, the claim holds.

Putting these three claims together, we have that ‖fs‖ ≤ 3D [RS15].

This gives a full Lipschitz extension of the degree list. We note that this can be efficiently
computed via an efficient linear program solver, since the problem of minimizing Φ is simply a
convex optimization problem over the set of feasible flows for a flow graph with polynomially
many constraints [RS15].

Rashkhodnikova and Smith [RS15] use this Lipschitz extension to devise a few more things:

• This extension is employed to create a degree distribution Lipschitz extension, a his-
togram of the degrees of every vertex. This is achieved by defining a stretch 1 function
that takes as input the degree list and outputs the cumulative degree histogram (CDH),
counts of vertices of degree greater than a certain amount [RS15]. Then, transforming
this cumulative histogram to a degree histogram has stretch 2 (since to obtain the
degree histogram we subtract consecutive elements of the CDH). Thus, this results in
a stretch 3 Lipschitz extension for the degree histogram [RS15].
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• One lingering question we have left unanswered is how to select an appropriate value
of D. Rashkhodnikova and Smith [RS15] create a modified version of the exponential
mechanism for Lipschitz extensions. The current issue with the exponential mechanism
is that q-functions with large sensitivities are not penalized enough in order to output
with small error, since, if we let ε′ = 2ε∆(q) in the exponential mechanism, the error
term in Theorem 2.10 relies on the maximum sensitivity of q over all values of r.
This new exponential mechanism releases an output whose error is proportional to the
sensitivity of the optimal r [RS15].

5 Conclusion

In this paper, we review the multitude of theory developed for designing private algorithms
on graphical data. We see that in the design of the techniques described in this paper, the
high sensitivity and sparsity of most graph enable us to create more useful algorithms for
operating in this domain. These properties drove the creation of two key ideas: adding
noise reduction for high-sensitivity queries as well as designing functional extensions of well-
behaved subsets. In particular, these techniques we discussed are not only applicable to
graphs, but for any generic collection of datasets. Therefore, these techniques are not solely
tailored towards usage in graph problems; they comprise an artifact of the investigation of
fundamental issues in conventional private graph algorithm design.

We remark on some potential areas of future work based on the results presented above. Most
of the above constructions were not very efficient compared to their non-private counterparts.
A great deal of research could be spent to come up with viable algorithms that push the
efficiency further. Furthermore, frameworks such as the Lipschitz extension frameworks are
not very easily generalizable; as we saw, not all functions yield a Lipschitz extension in higher
dimensions [RS15]. The ideal scenario would be to have nontrivial necessary and sufficient
conditions for when such an extension exists, as well as a more generalizable framework for
constructing such extensions when those conditions are satisfied.
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A Appendix

Invariance to sorting of the degree list

Lemma A.1. Let a,b ∈ Rn be two sequences of real numbers. Then ‖sort(b)− sort(a)‖1 ≤
‖b− a‖1.

Proof. Define a parallel pair of vectors a′,b′ with respect to a,b if there exists some permu-
tation σ such that σ(a) = a′ and σ(b) = b′.

Note that permuting two vectors under the same permutation does not change the L1 norm
between them. Thus, we can prove the stronger claim: any parallel pair x,y with respect to
sort(a), sort(b) has minimum L1 distance, i.e. for any permutations σ1, σ2,

‖y − x‖1 ≤ ‖σ2(b)− σ1(a)‖1

Now, note that x,y is a parallel pair to sort(a), sort(b) if and only if for all i, j, we have
that either xi ≤ xj and yi ≤ yj, or xi ≥ xj and yi ≥ yj. It just suffices to find a parallel pair
that has minimum distance, since all parallel pairs have the same distance.

Suppose by way of contradiction that no parallel pair x,y achieves the minimum; then con-
sider an arbitrary non-parallel pair x′,y′ to sort(a), sort(b) that does achieve the minimum
L1 distance out of all permutations σ1, σ2; then for some i, j, the pairs (x′i, x

′
j) and (y′i, y

′
j)

have opposite orderings. WLOG, we assume that x′i < x′j and y′i > y′j (we will consider the
case when one pair is equal later). One can verify the different cases of the relative orderings
of {x′i, x′j, y′i, y′j} to show that by swapping y′i and y′j, the L1 distance can only decrease.
The resulting vectors cannot parallel to sort(a), sort(b) by our initial assumption. If the L1

distance decreases, this contradicts the minimality of x′,y′. Thus, the L1 distance must stay
the same. This process can be iterated until such i, j do not exist in the vectors, but this
would contradict the fact that parallel pairs cannot achieve the minimum L1 distance.

Therefore, every parallel pair achieves the minimum, and in particular, sort(a), sort(b)
achieves the minimum.

Notes on convex optimization

We prove a result about convex optimization that we make use of in Theorem 4.12.

Theorem A.2 (Obtuse angle theorem [PSU88]). Let C ⊆ Rk be a convex set. Let y /∈ C be
some point outside of our convex set. Then the point x̂ ∈ C is the closest point to y in C if
and only if

〈y − x̂,x− x̂〉 ≤ 0

for all x ∈ C.
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Proof. The proof is from [Lav19]. Fix an arbitrary x ∈ C, and consider the set of points on
the line between x and x̂, parameterized by t. Define φ to be the squared distance between
a point on this line and y:

φ(t) = ‖tx + (1− t)x̂− y‖2 t ∈ [0, 1]

Notice that

φ(t) = ‖tx + (1− t)x̂− y‖2

= ‖(x̂− y) + t(x− x̂)‖2

= ‖x̂− y‖2 − 2t〈y − x̂,x− x̂〉+ t2‖x− x̂‖2

φ′(t) = 2t‖x− x̂‖2 − 2〈y − x̂,x− x̂〉
= 2t‖x− x̂‖2 + φ′(0)

Now note the following:

• If φ′(0) ≥ 0, then φ′(t) ≥ 0 for all t, and so φ is increasing w.r.t. t and thus t = 0
achieves the minimum.

• If φ′(0) < 0, then for some small value of t, φ′(t′) < 0 for all t′ ∈ [0, t], and thus
φ(0) > φ(t), and thus t = 0 does not yield the minimum.

From this, we conclude that x̂ ∈ C is the closest point to y if and only if φ′(0) ≥ 0, or
equivalently, 〈y − x̂,x− x̂〉 ≤ 0, concluding the proof from [Lav19].
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