
The Steam Engine: A Recommendation System for Steam Users

Barry Plunkett, Brandon Lin, Stephanie Shi, Chris Painter

eplu@sas.upenn.edu, {branlin,stephshi,cpainter}@seas.upenn.edu
Department of Computer and Information Science, University of Pennsylvaniau

Abstract

Steam is a video game distribution platform. We employ neighborhood, matrix factorization,
and mixed collaborative filtering (CF) methods to predict the number of hours Steam users
will play games. We also adapt a regression boosting framework for matrix factorization CF
algorithms and apply it to the prediction task. We find that neighborhood methods outperform
matrix factorization methods, and a mixed approach outperforms both. Additionally, we find the
boosting framework did not meaningful improve performance. To improve predictions, future
research should incorporate user friendship networks.

1 Introduction

With over 67 million active monthly users and a library of more than 700 million games [10], Steam
is the world’s largest video game distribution platform. However, developers cannot expect users to
happily troll this virtually limitless trove of content in search of new games to purchase and play.
Users would grow bored, disengage from the platform, and make fewer purchases. To tackle this
problem, we seek to predict the number of hours a user will play a new game [8].

2 Related Work

Researchers at Brigham Young University conducted comprehensive exploratory data analysis of
the Steam Gaming Network [8], but no public effort has been made to apply collaborative filtering
techniques to Steam users and games. Research on CF techniques was popularized by the Netflix
Challenge, in which researchers competed to predict user ratings for movies using a data set of
movie ratings. The challenge also stimulated research into more sophisticated mixed methods
[3], as mixed algorithms, which feature elements of both factorization and neighborhood based
approaches, outperformed the simpler models [4].

3 Data Set

We use the publicly available Steam data set compiled by the iLab at Brigham Young University
[7]. The data, collected using the Steam Web API, gives the number of hours Steam users have
played the games in their library and includes more than 130 million observations over 109 million
users and 316 million games (99.6% sparse). We constructed and worked with a sub-sample of this
data consisting of hour counts associated with 516,000 unique users.

1

4 Problem Formulation

For our collaborative filtering algorithms, we use the number of hours a user has played a game as
a proxy for how much a user likes a game. We removed users who have never played games, games
that have never been played, and observations of users playing games for more than 80000 hours.1

This yields a data set containing playtimes for about 5.5 million user-game pairs. Given the high
variability in the number of hours a user could have played a game, we used two approaches to
shrink the range of the “ratings” variable in question:

• Binning: A list of all possible numbers of hours played from the data set was generated,
along with the 20th, 40th, 60th, and 80th percentiles. These percentiles determined 5 disjoint
intervals, and each game-rating pair was assigned a rating (from 1 to 5) corresponding to
their respective interval.

• Normalizing: For each user, hours played was replace by its z-score within the user:

riu ←
riu − 1

m

∑m
i=1 riu

σ/
√

of games played by i

Substituting z-scores for raw playtime helps account for inherent user biases [5], i.e. certain users
may play few or many hours of games relative to the rest of the population. This substitution also
helps control for the distortionary effects of inherent user playtime variance, i.e. some users may
express preference for games with fewer hours played varying between the games they played the
most and those they played the least. Thus, throughout our experiment, we used the normalizing
technique and report results in terms of user z-scores. The z-scores were truncated outside the
interval [−3, 3], and 3 was added to each score, so data points are in the range [0, 6].

Formally, we define our problem as two inputs: a subset of user-game tuples Ω ({(i, j) | i ∈
[m], j ∈ [n]} and observed implicit ratings rij , ∀(i, j) ∈ Ω (formulated above) for each user-game
pair. As output, we predict the implicit ratings (hours) r̂ij for user-game pairs.

All algorithms were implemented in Python. Due to the size of the data, all had to be implemented
by hand except SVD, for which we used the Surprise package.

5 Algorithms

5.1 Baseline

For our baseline, we implemented a model that assumes a Gaussian prior on the data. To make a
prediction for the rating a particular user u gives to item i, the model makes a draw from N (µu, σu),
where µu is the mean of the ratings associated with all items u has rated in the training set and
σu is the corresponding standard deviation.

1Steam was released in late 2003, so playtime may not exceed 15 years. Assuming users spend 8 hours a day away
from their games yields a maximum playtime of about 8000 hours.

2

5.2 Neighborhood Algorithms

We implemented a user-based neighborhood algorithm, which predicts for a particular user u and
item i:

r̂ui = µu +

∑
v∈Pu(i)

Sim(u, v) · (rvi − µv)∑
v∈Pu(i)

|Sim(u, v)|

where Pu(i) represents the “closest” users to u that have played game i. The model is based on the
idea that user u will likely rate item i like users who are similar to u have rated i. We implemented
two common similarity measures: Pearson Correlation and Raw Cosine Similarity [2].

5.3 Latent Factor Models

Latent factor models assume users and items can be represented in the same low-dimensional space
of latent factors. Intuitively, these latent factors represent attributes of the users and games, such
as first-person and preference for first-person. SVD is among the highest performing algorithms in
this class. For a given user u and item i, SVD predicts:

r̂ui = q>u pi + bi + bu + µ

In this formulation, the qu ∈ Rk is a representation of user u in latent-factor space and pi ∈ Rk
is a representation of item i in latent-factor space. bu and bi represent bias terms, and µ gives
the global mean. We use stochastic gradient descent to learn parameters which minimize squared
loss under this function and update all parameters after every prediction. This optimization was
implemented in the Surprise package.

We attempt to enhance this SVD algorithm using an adaptation of a regression boosting technique,
AdaBoost.R [9]. Although we believed SVD factorizations could be conceived of as weak learners
that minimize squared loss like most regression techniques, we could not find any published paper
that evaluated the performance of SVD in an Adaboost framework. As a result, we evaluate the
performance of SVD as a learner in AdaBoost.R and submit the results as a novel contribution.
On each iteration of the boosting algorithm, we initialize weights on the training data, associate
these weights with a probability distribution over the data (p(i,j) = w(i,j)/

∑
(i,j)∈R wij), draw a

sub-sample of the data according to this distribution, use this sample to learn representations of
users and games as factor vectors and associated biases with SGD, calculate probability-weighted
squared loss for each example in the full set of data, calculate a measure of confidence for the
factorization based on total loss, update the weight of each example based on its loss, such that
the weights examples with the highest loss increase and those with lower loss decrease, relatively.2

To classify a new point, the boosting algorithm predicts the confidence weighted median of the
predictions of the weak learners.

5.4 Mixed Methods

Finally, we implement neighborhood factorization, an algorithm which combines factorization and
neighborhood approaches. The intuition for this approach is that neighborhood approaches can
leverage localized patterns encoded in ratings particular users have given to the close neighbors of

2Details in citation.

3

an item, and factorization approaches capture the global structure of the data. As a result, the two
should complement each other well when integrated carefully. To integrate both approaches, for a
particular user u and item i, we predict:

r̂ui = bu + bi + µ+ |Rk(i, u)|−1/2
∑

j∈Rk(i,u)

(ruj − buj)wij + q>u · pi

Here, we define we define Rk(i, u) as the subset of the k games most similar to i, which user u
owns. bu, qu, bi, qi, wij are parameters that we update using SGD for the squared loss under the
prediction rule. Note that buj is constant, and it is given by bu + bj + µ for the initial values of bu
and bj . We employ gradient descent to update parameters.

6 Experimental Design and Results

We split our subset of data into train and test sets by randomly assigning 10% of user-item pairs
to the test set (T) and leaving the remaining examples in the training set (R). Performance was

evaluated by computing root mean squared error on the test set: RMSE =
√∑

(i,j)∈T (rij − r̂ij)2,
as in the Netflix Challenge [1]. For all SGD usages, we use η = .005 as the learning rate.

6.1 Memory-Based

0 10 20 30 40 50

0.65

0.7

0.75

Pearson

Cosine

k

R
M

S
E

k Pearson RMSE Cosine RMSE

5 0.6826 0.7530

10 0.6636 0.6959

15 0.6643 0.7041

25 0.6556 0.7079

50 0.6579 0.7000

We learned models for k = 5, 10, 15, 25, 50. Increasing k on average led to a lower RMSE. We
can see that the Pearson correlation lead to a lower RMSE as compared to raw cosine, which is
expected since the raw cosine does not account for bias adjustment effect of mean-centering.

6.2 Latent Factor Models

For SVD, we have 4 regularization parameters: λbi , λbu , λqu , λpi . For simplicity, we set these
equal to each other, and treat the regularization parameter as a single hyper-parameter. We
also have a hyper-parameter for the number of latent factors (k). Using the surprise package,
5-fold cross validation on the training set for all combinations of λ = [.001, .01, .02, .05, .1] and
k = 25, 50, 100, 200 with 20 epochs of SGD.3 We find k = 100 and λ = .02 yields the lowest mean

3Parameters tended to stabilize at this point.

4

5 10 15 20 25

0.7

0.75

0.8

0.85

0.9

Iterations (%)

R
M

S
E

70%

50%

30%

Model Best RMSE

Baseline 1.0724

SVD 0.7056

SVD w/ Boosting (5 weak learners) 0.6800

Neighborhood Factorization 0.6200

cross-validation error. The matrix factorization model learned with these parameters yields .7056
RMSE after 20 epochs.

For the boosted SVD, we do not cross-validate over k or λ due to the high cost of training. Instead,
we use the optimal number of parameters k and regularizer λ from the simple SVD for boosted
SVD. Given these hyper-parameters, we compare the performance of boosted SVD models with
three sub sample sizes: 30%, 50%, and 70% and several different committee sizes: 5, 10, 25. The
results of these experiments are summarized in the plot below. In general, the subsample size did
not introduce a great deal of variance into performance, increasing iterations increased training
error, and the best boosted model (i = 5 and s = 70%) barely outperformed standard SVD.

For the neighborhood factorization algorithm, we initialize user and game vectors as the output
of SVD trained with λ = .02 and k = 100. For computational efficiency, we choose n = 10 for
the number of neighbors, since there is low return to increasing neighbors [6]. We calculate the
similarity of games using Pearson correlation multiplied by a shrinkage factor: sim(i, j) =

nij

nij+β
·pij ,

where nij gives the number of users who own both games i and j. We use β = 100, a common choice
[6]. This shrinkage reflects the idea that we are more confident about similarities when more users
share the games. We initialize the game-game weights to 1. We initialize bu and bi by minimizing∑

R(rui−µ− bu− bi)2 via SGD. The model has three regularization parameters: λb for bias terms,
λqp for factor vectors, and λw for the game-game weights [6]. The model is extremely expensive
to train because we can’t store the sets of similar games in memory (R(i;u)), so we don’t attempt
to optimize hyper-parameters. Instead, we borrow parameter values from Koren: λb = λpq = .005
and λw = .001, ,and we subsample 50000 samples for each epoch [6]. Before training, the model
has RMSE of .72 on a subsample of 50000 instance in the test set. After 30 epochs, RMSE falls to
approximately .62.

7 Conclusion and Discussion

Our results have shown that we are able to predict Steam user game play times to within .62
standard deviations of a user’s playtime on average. By showing each user u only games for which
our best model predicts high ratings, Steam can bolster customer satisfaction and engagement.

As expected, the mixed method outperforms neighborhood and factorization approaches. Interest-

5

ingly, neighborhood methods slightly outperformed factorization methods. The reasons for this are
unclear, but the use of hours played as a heuristic for player preference, as opposed to explicit user
ratings of games, could contribute. For example, users may play games that aren’t well aligned
with their preferences because their friends are playing them or because they are popular. Since
we use hours as a heuristic for enjoyment, we can’t distinguish well between instances of popular
games users actually enjoy and those they don’t.

Boosting is able to improve the SVD error slightly by a margin of 0.02; however, as the number
of weak learners increased, we observed that the RMSE increased. This could indicate overfitting
of the training data with a higher number of models. Therefore, we conclude that boosting SVD
in the AdaBoost.R framework is not effective in this case for the subsample sizes we experimented
on. Future research should consider alternative boosting frameworks and careful exploration of
hyperparameters, especially smaller subsample sizes.

References

[1] Frequently asked questions. https://www.netflixprize.com/faq.html.

[2] C.C. Aggarwal. Recommender Systems: The Textbook. Springer International Publishing,
2016.

[3] Yu He Andrey Fuerverger and Shashi Khatr. Statistical significance of the netflix challenge.

[4] Edwin Chen. Winning the netflix prize: A summary.

[5] Bracha Shapira Francesco Ricci, Lior Rokach. Recommender Systems Handbook. Springer, 2
edition, 2015.

[6] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. Proceedings of the 14th ACM SIGKDD, pages 426–434, 2008.

[7] Internet Research Lab. Steam dataset, 2016. https://steam.internet.byu.edu/.

[8] Justin Wu Mark O’Neill, Elham Vaziripour and Daniel Zappala. Condensing steam: Distilling
the diversity of gamer behavior. https://steam.internet.byu.edu/.

[9] Greg Ridgeway, David Madigan, and Thomas Richardson. Boosting methodology for regression
problems. May 2001.

[10] Steam. Steam: Game and player statistics. store.steampowered.com/stats/.

6

